Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.792
Filtrar
1.
Environ Geochem Health ; 46(4): 123, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483669

RESUMO

Soil is one of the largest reservoirs of microbial diversity in nature. Although soil management is vital for agricultural purposes, intensive practices can have a significant impact on fertility, microbial community, and resistome. Thus, the aim of this study was to evaluate the effects of an intensive soil management system on the chemical attributes, composition and structure of prevalent bacterial communities, and presence and abundance of antimicrobial resistance genes (ARGs). The chemical characterization, bacterial diversity and relative abundance of ARGs were evaluated in soils from areas of intensive vegetable cultivation and forests. Results indicate that levels of nutrients and heavy metals were higher in soil samples from cultivated areas. Similarly, greater enrichment and diversity of bacterial genera was detected in agricultural areas. Of the 18 target ARGs evaluated, seven were detected in studied soils. The oprD gene exhibited the highest abundance among the studied genes and was the only one that showed a significantly different prevalence between areas. The oprD gene was identified only from soil of the cultivated areas. The blaSFO, erm(36), oprD and van genes, in addition to the pH, showed greater correlation with in soil of cultivated areas, which in turn exhibited higher contents of nutrients. Thus, in addition to changes in chemical attributes and in the microbial community of the soil, intensive agricultural cultivation systems cause a modification of its resistome, reinforcing the importance of the study of antimicrobial resistance in a One Health approach.


Assuntos
Antibacterianos , Microbiota , Antibacterianos/farmacologia , Solo/química , Genes Bacterianos , Brasil , Bactérias , Resistência Microbiana a Medicamentos/genética , Microbiota/genética , Florestas , Microbiologia do Solo , Esterco/microbiologia
2.
J Environ Manage ; 357: 120636, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38552514

RESUMO

Although aerobic composting is usually utilized in livestock manure disposal, the emission of odorous gases from compost not only induces harm to the human body and the environment, but also causes loss of nitrogen, sulfur, and other essential elements, resulting in a decline in product quality. The impact of biotrickling filter (BTF) and insertion of carbon-based microbial agent (CBMA) on compost maturation, odor emissions, and microbial population during the chicken manure composting were assessed in the current experiment. Compared with the CK group, CBMA addition accelerated the increase in pile temperature (EG group reached maximum temperature 10 days earlier than CK group), increased compost maturation (GI showed the highest increase of 41.3% on day 14 in EG group), resulted in 36.59% and 14.60% increase in NO3--N content and the total nitrogen retention preservation rate after composting. The deodorization effect of biotrickling filter was stable, and the removal rates of NH3, H2S, and TVOCs reached more than 90%, 96%, and 56%, respectively. Furthermore, microbial sequencing showed that CBMA effectively changed the microbial community in compost, protected the ammonia-oxidizing microorganisms, and strengthened the nitrification of the compost. In addition, the nitrifying and denitrifying bacteria were more active in the cooling period than they were in the thermophilic period. Moreover, the abundance of denitrification genes containing nirS, nirK, and nosZ in EG group was lower than that in CK group. Thus, a large amount of nitrogen was retained under the combined drive of BTF and CBMA during composting. This study made significant contributions to our understanding of how to compost livestock manure while reducing releases of odors and raising compost quality.


Assuntos
Inoculantes Agrícolas , Compostagem , Animais , Humanos , Esterco/microbiologia , Galinhas , Odorantes , Nitrogênio/análise , Carbono , Solo
3.
Environ Sci Pollut Res Int ; 31(17): 26141-26152, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38491241

RESUMO

Agricultural wastes, comprising cotton straw and livestock manure, can be effectively managed through aerobic co-composting. Nevertheless, the quality and microbial characteristics of co-composting products from different sources remain unclear. Therefore, this study utilized livestock manure from various sources in Xinjiang, China, including herbivorous sheep manure (G), omnivorous pigeon manure (Y), and pigeon-sheep mixture (GY) alongside cotton stalks, for a 40-day co-composting process. We monitored physicochemical changes, assessed compost characteristics, and investigated fungal community. The results indicate that all three composts met established composting criteria, with compost G exhibiting the fastest microbial growth and achieving the highest quality. Ascomycota emerged as the predominant taxon in three compost products. Remarkably, at the genus level, the biomarker species for G, Y, and GY are Petromyces and Cordyceps, Neurospora, and Neosartorya, respectively. Microorganisms play a pivotal role in organic matter degradation, impacting nutrient composition, demonstrating significant potential for the decomposition and transformation of compost components. Redundancy analysis indicates that potassium, total organic carbon, and C:N are key factors influencing fungal communities. This study elucidates organic matter degradation in co-composting straw and livestock manure diverse sources, optimizing treatment for efficient agricultural waste utilization and sustainable practices.


Assuntos
Compostagem , Micobioma , Animais , Ovinos , Solo/química , Esterco/microbiologia , Gado , Gossypium
4.
Huan Jing Ke Xue ; 45(3): 1840-1848, 2024 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-38471895

RESUMO

Animal farms are important sources of microbial contamination in the air environment. However, there are few reports on the time-regularity characteristics of airborne microbial contamination in farms. In the context of this situation, a study was conducted for more than 80 weeks using 16S rRNA gene amplicon sequencing to characterize the bacterial distribution and respiratory exposure in the farm air and fecal environment, respectively, taking a layer farm as an example. The results showed that 16S rRNA concentrations in air and manure samples ranged from 6.08×105-4.90×106 copies·m-3 and 4.27×108-1.15×1010 copies·g-1, respectively. The mean values of airborne bacterial concentrations were significantly higher in winter than in summer, whereas the biodiversity showed the opposite trend. The dominant bacterial phylum in both air and manure in the layer farm was Firmicutes. During the investigated time, the top three dominant genera in the air were relatively stable, in the order of Lactobacillus, Bacteroides, and Faecalibacterium, whereas the dominant genera in feces fluctuated with the increase in breeding time. The correlation between the community structure of bacteria and pathogenic bacteria in both air and manure was not significant, but the concentrations of both target microorganisms in different media were significantly correlated. The bioaerosolization index of bacteria in manure showed an increasing trend with increasing breeding time, whereas the opposite trend was observed for pathogenic bacteria. In this case, [Ruminococcus]_torques_group, Bacteroides, and Faecalibacterium were the top three pathogenic genera that were the most prone to aerosolization. There were seasonal differences in bacterial respiratory exposures of chicken farm workers, with mean intake values of 2.54×107 copies·d-1 and 2.87×105 copies·d-1 for bacteria and pathogenic bacteria, respectively. The results of this study will provide a scientific basis for systematically assessing the contamination characteristics and potential health risks of airborne microorganisms on farms and for developing corresponding industry standards for occupational exposure and prevention and control measures.


Assuntos
Galinhas , Esterco , Animais , Microbiologia do Ar , Bactérias/genética , Galinhas/genética , Fazendas , Esterco/microbiologia , RNA Ribossômico 16S/genética , Humanos
5.
J Environ Manage ; 356: 120573, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38479289

RESUMO

Anaerobic co-fermentation is a favorable way to convert agricultural waste, such as swine manure (SM) and apple waste (AW), into lactic acid (LA) through microbial action. However, the limited hydrolysis of organic matter remains a main challenge in the anaerobic co-fermentation process. Therefore, this work aims to deeply understand the impact of cellulase (C) and protease (P) ratios on LA production during the anaerobic co-fermentation of SM with AW. Results showed that the combined use of cellulase and protease significantly improved the hydrolysis during the enzymatic pretreatment, thus enhancing the LA production in anaerobic acidification. The highest LA reached 41.02 ± 2.09 g/L within 12 days at the ratio of C/P = 1:3, which was approximately 1.26-fold of that in the control. After a C/P = 1:3 pretreatment, a significant SCOD release of 45.34 ± 2.87 g/L was achieved, which was 1.13 times the amount in the control. Moreover, improved LA production was also attributed to the release of large amounts of soluble carbohydrates and proteins with enzymatic pretreated SM and AW. The bacterial community analysis revealed that the hydrolytic bacteria Romboutsia and Clostridium_sensu_stricto_1 were enriched after enzyme pretreatment, and Lactobacillus was the dominant bacteria for LA production. This study provides an eco-friendly technology to enhance hydrolysis by enzymatic pretreatment and improve LA production during anaerobic fermentation.


Assuntos
Celulases , Malus , Animais , Suínos , Fermentação , Esterco/microbiologia , Ácido Láctico , Bactérias , Peptídeo Hidrolases
6.
J Environ Manage ; 355: 120463, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38430882

RESUMO

Biochar could promote humification in composting, nevertheless, its mechanism has not been fully explored from the perspective of the overall bacterial community and its metabolism. This study investigated the effects of bamboo charcoal (BC) and wheat straw biochar (WSB) on the humic acid (HA) and fulvic acid (FA) contents during pig manure composting. The results showed that BC enhanced humification more than WSB, and significantly increased the HA content and HA/FA ratio. The bacterial community structure under BC differed from those under the other treatments, and BC increased the abundance of bacteria associated with the transformation of organic matter compared with the other treatments. Furthermore, biochar enhanced the metabolism of carbohydrates and amino acids in the thermophilic and cooling phases, especially BC. Through Mantel tests and network analysis, we found that HA was mainly related to carbon source metabolism and the bacterial community, and BC might change the interaction patterns among carbohydrates, amino acid metabolism, Bacillales, Clostridiales, and Lactobacillales with HA and FA to improve the humification process during composting. These results are important for understanding the mechanisms associated with the effects of biochar on humification during composting.


Assuntos
Carvão Vegetal , Compostagem , Animais , Suínos , Carvão Vegetal/química , Esterco/microbiologia , Solo/química , Substâncias Húmicas , Carboidratos , Bactérias
7.
J Environ Manage ; 355: 120475, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38447511

RESUMO

The production of biogas from organic waste has attracted considerable interest as a solution to current energy and waste management challenges. This study explored the methane (CH4) production potential of swine manure (SM), food waste (FW), and tomato waste (TW) and the changes in the microbial community involved in the anaerobic digestion process. The results revealed that the CH4 production potentials of the four kinds of SM samples were influenced by the characteristics of SM (e.g., age and storage period). Among the four kinds of SM samples, the CH4 yield from the manure directly sampled from primiparous sows (SM3) was the highest. The CH4 yield was significantly improved when SM3 was co-digested with FW, but not with TW. The addition of SM fostered a stable CH4 production community by enhancing the interaction between methanogens and syntrophic bacteria. Furthermore, the addition of FW as a co-substrate may improve the functional redundancy structure of the methanogenesis-associated network. Overall, the characteristics of SM must be considered to achieve consistent CH4 yield efficiency from anaerobic digestion since CH4 production potentials of SM can be different. Also, the contribution of co-substrate to the synergistic relationship between methanogens and syntrophic bacteria can be considered when a co-substrate is selected in order to enhace CH4 yield from SM.


Assuntos
Eliminação de Resíduos , Animais , Suínos , Feminino , Anaerobiose , Reatores Biológicos , Esterco/microbiologia , Alimentos , 60659 , Metano , Biocombustíveis/análise , Bactérias , Digestão
8.
Sci Total Environ ; 923: 171346, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38438039

RESUMO

As a novel agricultural practice, the reuse of food waste compost and digestate as fertilizers leads to a circular economy, but inevitably introduces bio-contaminants such as antibiotic resistance genes (ARGs) into the agroecosystem. Moreover, heavy metal and antibiotic contamination in farmland soil may exert selective pressures on the evolution of ARGs, posing threats to human health. This study investigated the fate, influencing mechanisms and potential risks of ARGs in a soil-vegetable system under different food waste fertilization and remediation treatments and soil contamination conditions. Application of food waste fertilizers significantly promoted the pakchoi growth, but resulted in the spread of ARGs from fertilizers to pakchoi. A total of 56, 80, 84, 41, and 73 ARGs, mobile genetic elements (MGEs) and metal resistance genes (MRGs) were detected in the rhizosphere soil (RS), bulk soil (BS), control soil (CS), root endophytes (RE), and leaf endophytes (LE), respectively. Notably, 7 genes were shared in the above five subgroups, indicating a specific soil-root-endophytes transmission pathway. 36 genes were uniquely detected in the LE, which may originate from airborne ARGs. The combined application of biochar and fertilizers reduced the occurrence of ARGs and MGEs to some extent, showing the remediation effect of biochar. The average abundance of ARGs in the RS, BS and CS was 3.15 × 10-2, 1.31 × 10-2 and 2.35 × 10-1, respectively. Rhizosphere effects may reduce the abundance of ARGs in soil. The distribution pattern of ARGs was influenced by the types of soil, endophyte and contaminant. MGEs is the key driver shaping ARGs dynamics. Soil properties and pakchoi growth status may affect the bacterial composition, and consequently regulate ARGs fate, while endophytic ARGs were more impacted by biotic factors. Moreover, the average daily doses of ARGs from pakchoi consumption is 107-109 copies/d/kg, and its potential health risks should be emphasized.


Assuntos
Carvão Vegetal , Compostagem , Eliminação de Resíduos , Humanos , Antibacterianos/análise , Solo , Genes Bacterianos , Fertilizantes/análise , Verduras , 60659 , Esterco/microbiologia , Microbiologia do Solo
9.
Chemosphere ; 353: 141657, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38452978

RESUMO

In order to explore the effects of micro-nano bubble water (MNBW) on compost maturation and the microbial community in cow manure and straw during aerobic composting, we conducted composting tests using tap water with 12 mg/L (O12), 15 mg/L (O15), 18 mg/L (O18), and 21 mg/L (O21) dissolved oxygen in MNBW, as well as tap water with 9 mg/L dissolved oxygen as a control (CK). The results showed that O21 increased the maximum compost temperature to 64 °C, which was higher than the other treatments. All treatments met the harmless standards for compost. The seed germination index (GI) was largest under O21 and 15.1% higher than that under CK, and the non-toxic compost degree was higher. Redundancy analysis showed that the temperature, C/N, pH, and GI were important factors that affected the microbial community composition. The temperature, C/N, and pH were significantly positively correlated with Firmicutes and Actinobacteria (p < 0.05). Firmicutes was the dominant phylum in the mesophilic stage (2-6 days) and it accounted for a large proportion under O21, where the strong thermophilic metabolism increased the production of heat and prolonged the high temperature period. The bacterial genus Ammoniibacillus in Firmicutes accounted for a large proportion under O21 and it accelerated the decomposition of substrates. Therefore, the addition of MNBW changed the microbial community to affect the maturation of the compost, and the quality of the compost was higher under O21.


Assuntos
Compostagem , Microbiota , Animais , Bovinos , Feminino , Nitrogênio/análise , Bactérias/metabolismo , Firmicutes , Esterco/microbiologia , Oxigênio , Solo
10.
Microbiol Spectr ; 12(4): e0426323, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38376365

RESUMO

Recycled manure solids (RMS) is used as bedding material in cow housing but can be at risk for pathogens development. Cows spend several hours per day lying down, contributing to the transfer of potential mastitis pathogens from the bedding to the udder. The effect of a bacterial conditioner (Manure Pro, MP) application was studied on RMS-bedding and milk qualities and on animal health. MP product was applied on bedding once a week for 3 months. Bedding and teat skin samples were collected from Control and MP groups at D01, D51, and D90 and analyzed through 16S rRNA amplicon sequencing. MP application modified bacterial profiles and diversity. Control bedding was significantly associated with potential mastitis pathogens, while no taxa of potential health risk were significantly detected in MP beddings. Functional prediction identified enrichment of metabolic pathways of agronomic interest in MP beddings. Significant associations with potential mastitis pathogens were mainly observed in Control teat skin samples. Finally, significantly better hygiene and lower Somatic Cell Counts in milk were observed for cows from MP group, while no group impact was observed on milk quality and microbiota. No dissemination of MP strains was observed from bedding to teats or milk. IMPORTANCE: The use of Manure Pro (MP) conditioner improved recycled manure solids-bedding quality and this higher sanitary condition had further impacts on dairy cows' health with less potential mastitis pathogens significantly associated with bedding and teat skin samples of animals from MP group. The animals also presented an improved inflammation status, while milk quality was not modified. The use of MP conditioner on bedding may be of interest in controlling the risk of mastitis onset for dairy cows and further associated costs.


Assuntos
Esterco , Mastite , Feminino , Bovinos , Animais , Humanos , Esterco/microbiologia , RNA Ribossômico 16S/genética , Abrigo para Animais , Bactérias/genética , Roupas de Cama, Mesa e Banho
11.
Environ Int ; 185: 108499, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38368718

RESUMO

The transportation of antibiotic resistance genes (ARGs) in manure-soil-plant continuums poses risks to human health. Horizontal gene transfer, particularly for bacterial transformation, is an important way for ARG dissemination. As crucial components in soils, iron oxides impacted the fates of various abiotic and biotic contaminants due to their active properties. However, whether they can influence the transformation of ARGs is unknown, which waits to be figured out to boost the assessment and control of ARG spread risks. In this study, we have investigated the effects of goethite, hematite, and magnetite (0-250 mg/L, with sizes < 100 nm and > 100 nm) on the transfer of ampicillin resistance genes to Escherichia coli cells. At lower iron oxide concentrations, the transformation of ARGs was first facilitated (transformation frequency reached up to 3.38-fold higher), but the facilitating effects gradually weakened and eventually disappeared as concentrations further increased. Particle size and iron oxide type were not the universal determinants controlling the transformation. At lower concentrations, iron oxides interacted with proteins and phospholipids in E. coli envelope structures, and induced the overgeneration of intracellular reactive oxygen species. Consequently, they led to pore formation and permeability enhancement on the cell membrane, thus promoting the transformation. The facilitation was also associated with the carrier-like effect of iron oxides for antibiotic resistance plasmids. At higher concentrations, the weakened facilitations were attributed to the aggregation of iron oxides. In this study, we highlight the crucial roles of the concentrations (contents) of iron oxides on the dissemination of ARGs in soils; this study may serve as a reference for ARG pollution control in future agricultural production.


Assuntos
Antibacterianos , Compostos Férricos , Transformação Bacteriana , Humanos , Antibacterianos/farmacologia , Escherichia coli/genética , Genes Bacterianos , Resistência Microbiana a Medicamentos/genética , Solo/química , Óxidos , Ferro , Microbiologia do Solo , Esterco/microbiologia
12.
J Hazard Mater ; 468: 133792, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38368685

RESUMO

Disinfectants and antibiotics are widely used for the prevention and control of bacterial infectious diseases. Frequent disinfection is thought to exacerbate antibiotic resistance. However, little is known about how disinfectants and antibiotics co-induce changes in the soil antibiotic resistance genes (ARGs). This study determined the ARG profiles and bacterial community dynamics between unamended soil and manure-amended soil exposed to benzalkonium chloride (C12) (BC, 10 mg kg-1) disinfectant and sulfamethazine (SMZ, 1 mg kg-1), using high-throughput quantitative PCR and 16 S rRNA gene sequencing. Manure application enriched the soil in terms of ARGs abundance and diversity, which synergistically amplified the co-selection effect of BC and SMZ on soil antibiotic resistome. Compared with the control treatment, BC and SMZ exposure had a smaller impact on the bacterial infectious diseases and antimicrobial resistance-related functions in manure-amended soil, in which bacterial communities with greater tolerance to antimicrobial substances were constructed. Manure application increased the proportion of rank I ARGs and potential human pathogenic bacteria, while BC and SMZ exposure increased the drug-resistant pathogens transmission risk. This study validated that BC and SMZ aggravated the antimicrobial resistance under manure application, providing a reference for managing the spread risk of antimicrobial resistance in agricultural activities.


Assuntos
Doenças Transmissíveis , Desinfetantes , Humanos , Solo , Antibacterianos/toxicidade , Esterco/microbiologia , Genes Bacterianos , Desinfetantes/toxicidade , Desinfetantes/análise , Microbiologia do Solo , Bactérias/genética , Sulfametazina
13.
J Environ Manage ; 354: 120328, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38354615

RESUMO

This study aims to evaluate whether different doses of Bacillus-based inoculum inoculated in chicken manure and sawdust composting will provide distinct effects on the co-regulation of ammonia (NH3) and hydrogen sulfide (H2S), nutrient conversions and microbial topological structures. Results indicate that the Bacillus-based inoculum inhibits NH3 emissions mainly by regulating bacterial communities, while promotes H2S emissions by regulating both bacterial and fungal communities. The inoculum only has a little effect on total organic carbon (TOC) and inhibits total sulfur (TS) and total phosphorus (TP) accumulations. Low dose inoculation inhibits total potassium (TK) accumulation, while high dose inoculation promotes TK accumulation and the opposite is true for total nitrogen (TN). The inoculation slightly affects the bacterial compositions, significantly alters the fungal compositions and increases the microbial cooperation, thus influencing the compost substances transformations. The microbial communities promote ammonium nitrogen (NH4+-N), TN, available phosphorus (AP), total potassium (TK) and TS, but inhibit nitrate nitrogen (NO3--N), TP and TK. Additionally, the bacterial communities promote, while the fungal communities inhibit the nitrite nitrogen (NO2--N) production. The core bacterial and fungal genera regulate NH3 and H2S emissions through the secretions of metabolic enzymes and the promoting or inhibiting effects on NH3 and H2S emissions are always opposite. Hence, Bacillus-based inoculum cannot regulate the NH3 and H2S emissions simultaneously.


Assuntos
Bacillus , Compostagem , Microbiota , Animais , Bacillus/metabolismo , Galinhas , Esterco/microbiologia , Odorantes , Amônia/análise , Nitrogênio/análise , Bactérias/metabolismo , Nutrientes , Fósforo , Potássio , Solo/química
14.
Environ Int ; 184: 108469, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38324928

RESUMO

Biochar promotes microbial metabolic activities and reduces N2O on aerobic composting. However, the effects of magnetic biochar (MBC) on the microbial succession and N2O emissions during pig manure composting remain unclear. Herein, a 42-day composting experiment was conducted with five treatment regimes: pig manure without biochar (CK), 5 % pig manure-based biochar (5 % PBC), 2 % MBC (2 % MBC), 5 % MBC (5 % MBC) and 7.5 % MBC (7.5 % MBC)), to clarify the variation in functional microorganisms and genes associated with nitrogen and direct interspecies electron transfer via metagenomics. Fourier-transform infrared spectroscopy showed that MBC possessed more stable aromatic structures than pig manure-based biochar (PBC), indicating its greater potential for nitrous oxide reduction. MBC treatments were more effective in composting organic matter and improving the carbon/nitrogen ratio than PBC. The microbial composition during composting varied significantly, with the dominant phyla shifting from Firmicutes to Proteobacteria, Actinobacteria, and Bacteroidota. Network and hierarchical clustering analyses showed that the MBC treatment enhanced the interactions of dominant microbes (Proteobacteria and Bacteroidota) and accelerated the composting process. The biochar addition accelerated assimilatory nitrate reduction and slowed dissimilatory nitrate reduction and denitrification. The Mantel test demonstrated that magnetic biochar potentially helped regulate composting nutrients and affected functional nitrogen genes. These findings shed light on the role of MBC in mitigating greenhouse gas emissions during aerobic composting.


Assuntos
Compostagem , Esterco , Animais , Suínos , Esterco/microbiologia , Nitratos , Solo , Carvão Vegetal/metabolismo , Nitrogênio/análise , Fenômenos Magnéticos
15.
Ecotoxicol Environ Saf ; 272: 116077, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38335578

RESUMO

Vermicomposting via housefly larvae can be used to efficiently treat manure and regenerate biofertilizer; however, the uptake of heavy metals could negatively influence the growth and development of larvae. Intestinal bacteria play an important role in the development of houseflies, but their effects on resistance to heavy metal damage in houseflies are still poorly understood. In this study, the life history traits and gut microbiota of housefly larvae were evaluated after exposure to an environment with Cu2+ -Enterobacter hormaechei. The data showed that exposure to 300 µg/mL Cu2+ significantly inhibited larval development and locomotor activity and reduced immune capacity. However, dietary supplementation with a Cu2+ -Enterobacter hormaechei mixture resulted in increased body weight and length, and the immune capacity of the larvae returned to normal levels. The abundances of Providencia and Klebsiella increased when larvae were fed Cu2+ -contaminated diets, while the abundances of Enterobacter and Bacillus increased when larvae were exposed to a Cu2+ -Enterobacter hormaechei mixture-contaminated environment. In vitro scanning electron microscopy analysis revealed that Enterobacter hormaechei exhibited obvious adsorption of Cu2+ when cultured in the presence of Cu2+, which reduced the damage caused by Cu2+ to other bacteria in the intestine and protected the larvae from Cu2+ injury. Overall, our results showed that Enterobacter hormaechei can absorb Cu2+ and increase the abundance of beneficial bacteria, thus protecting housefly larvae from damage caused by Cu2+. These results may fill the gaps in our understanding of the interactions between heavy metals and beneficial intestinal bacteria, offering valuable insights into the interplay between housefly larvae and metal contaminants in the environment. This approach could enhance the efficiency of converting manure contaminated with heavy metals to resources using houseflies.


Assuntos
Moscas Domésticas , Metais Pesados , Animais , Moscas Domésticas/microbiologia , Larva , Esterco/microbiologia , Metais Pesados/toxicidade , Enterobacter
16.
Environ Sci Pollut Res Int ; 31(10): 14959-14970, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38285254

RESUMO

Due to the rapid development of animal husbandry, the associated environmental problems cannot be ignored, with the management of livestock and poultry manure emerging as the most prominent issue. Composting technology has been widely used in livestock and poultry manure management. A deeper understanding of the nitrogen conversion process during composting offers a theoretical foundation for selecting compost substrates. In this study, the effects of sawdust (CK) and spent mushroom compost (T1) as auxiliary materials on nitrogen as well as microbial structure in the composting process when composted with chicken manure were investigated. At the end of composting, the nitrogen loss of T1 was reduced by 17.18% relative to CK. When used as a compost substrate, spent mushroom compost accelerates the succession of microbial communities within the compost pile and alters the core microbial communities within the microbial community. Bacterial genera capable of cellulose degradation (Fibrobacter, Herbinix) are new core microorganisms that influence the assimilation of nitrate reduction during compost maturation. Using spent mushroom compost as a composting substrate increased the enzyme activity of nitrogen assimilation while decreasing the enzyme activity of the denitrification pathway.


Assuntos
Compostagem , Animais , Nitrogênio , Galinhas , Esterco/microbiologia , Solo/química , Aves Domésticas
17.
Sci Total Environ ; 916: 170180, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38262533

RESUMO

Manure application improves soil fertility, yet its implications on the success of invasion of manure-borne microorganisms in the soil are poorly understood. Here, we assessed the importance of abiotic and biotic factors in modulating the extent to which manure-borne fungal and bacterial communities can invade resident soil microbial communities. For this purpose, we applied varying frequencies of two different amounts of manure to nine soils differing in physico-chemical properties, as well as in land-use history, over 180 days and monitored changes in bacterial and fungal communities. Variance partitioning revealed differential contributions of abiotic and biotic factors to invasion success, which together accounted for up to 82 % of the variance explained. We showed that the effects of interactions between biotic and abiotic factors increased with coalescence frequency and manure amount for the bacterial and fungal communities, respectively. Both abiotic and biotic factors were important for modulating coalescence asymmetry for the bacterial community, whereas abiotic factors had a greater effect on the fungal community. These results provide new insights into the drivers of coalescence events between manure and resident soil microbial communities. Moreover, our findings highlight the roles of the mixing ratio and frequency of coalescence events in modulating the survival of manure-borne microorganisms.


Assuntos
Microbiota , Micobioma , Solo/química , Esterco/microbiologia , Microbiologia do Solo , Bactérias
18.
Environ Int ; 183: 108431, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38217904

RESUMO

Microplastic (MP) pollution is a rapidly growing global environmental concern that has led to the emergence of a new environmental compartment, the plastisphere, which is a hotspot for the accumulation of antibiotic resistance genes (ARGs) and human bacterial pathogens (HBPs). However, studies on the effects of long-term organic fertilizer application on the dispersal of ARGs and virulence factor genes (VFGs) in the plastisphere of farmland soil have been limited. Here, we performed a field culture experiment by burying nylon bags filled with MPs in paddy soil that had been treated with different fertilizers for over 30 years to explore the changes of ARGs and VFGs in soil plastisphere. Our results show that the soil plastisphere amplified the ARG and VFG pollution caused by organic fertilization by 1.5 and 1.4 times, respectively. And it also led to a 2.7-fold increase in the risk of horizontal gene transfer. Meanwhile, the plastisphere tended to promote deterministic process in the community assembly of HBPs, with an increase of 1.4 times. Network analysis found a significant correlation between ARGs, VFGs, and bacteria in plastisphere. Correlation analysis highlight the important role of mobile genetic elements (MGEs) and bacterial communities in shaping the abundance of ARGs and VFGs, respectively. Our findings provide new insights into the health risk associated with the soil plastisphere due ARGs and VFGs derived from organic fertilizers.


Assuntos
Antibacterianos , Solo , Humanos , Antibacterianos/farmacologia , Fertilizantes/análise , Genes Bacterianos , Plásticos , Esterco/microbiologia , Microbiologia do Solo , Resistência Microbiana a Medicamentos/genética , Bactérias/genética
19.
Can J Vet Res ; 88(1): 12-18, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38222071

RESUMO

Although recycled manure solids (RMS) bedding is used on dairy farms, it could allow bacterial growth when contaminated by feces and thus increase the incidence of clinical mastitis in cows. The objective of this study was to describe bacterial growth in three different types of RMS bedding, as well as in sand, when samples were experimentally inoculated with Escherichia coli and Klebsiella pneumoniae. Two 3-day trials were conducted, during which treatments included inoculating bedding samples with E. coli and K. pneumoniae, as well as no inoculation. The trial was repeated 3 times for each bedding sample on each day. Samples were incubated at 15°C for 3 d and bacterial counts were measured every day. After inoculation, there was no significant K. pneumoniae or E. coli growth phase during the trial in those RMS samples that were prepared either in a container or in a heap. Recycled manure solids and sand samples prepared in a rotary drum, however, showed a similar active growth phase of K. pneumoniae during the first 24 h of the trial. Moreover, a significant E. coli growth phase was observed in the samples of sand bedding in the first 24 h. The 3 different types of RMS bedding samples did not react in a similar manner to coliform inoculation. No active growth phase was observed in bedding samples already containing a high bacterial concentration following inoculation with coliforms.


Bien que la litière de fumier recyclé (LFR) soit utilisée dans les fermes laitières, elle pourrait permettre la croissance bactérienne lorsqu'elle est contaminée par des matières fécales et augmenter ainsi l'incidence de mammite clinique chez les vaches. L'objectif de cette étude était de décrire la croissance bactérienne dans trois types de LFR, ainsi que dans du sable, lorsque des échantillons étaient inoculés expérimentalement avec Escherichia coli et Klebsiella pneumoniae. Deux essais de trois jours ont été réalisés, au cours desquels les échantillons de litière ont été inoculés ou non avec E. coli et K. pneumoniae. L'essai a été répété trois fois pour chaque échantillon de litière, chaque jour. Les échantillons ont été incubés à 15 °C pendant 3 jours et la numération bactérienne a été mesurée chaque jour. Après inoculation, il n'y a pas eu de phase de croissance significative de K. pneumoniae ou d'E. coli au cours de l'essai dans les échantillons de LFR préparés dans un conteneur ou en tas. Les échantillons de sable et de LFR préparés dans un tambour rotatif ont cependant montré une phase de croissance active similaire de K. pneumoniae pendant les premières 24 heures de l'essai. En outre, une phase de croissance significative d'E. coli a été observée dans les échantillons de litière de sable au cours des premières 24 h. Les trois différents types d'échantillons de LFR n'ont pas réagi de la même manière à l'inoculation de coliformes. Aucune phase de croissance active n'a été observée dans les échantillons de litière contenant déjà une concentration bactérienne élevée après l'inoculation de coliformes.(Traduit par Docteur Simon Dufour).


Assuntos
Doenças dos Bovinos , Mastite Bovina , Feminino , Bovinos , Animais , Klebsiella pneumoniae , Esterco/microbiologia , Escherichia coli , Areia , Abrigo para Animais , Roupas de Cama, Mesa e Banho/veterinária , Mastite Bovina/microbiologia
20.
Sci Total Environ ; 913: 169794, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38181963

RESUMO

Livestock manure is a major source of veterinary antibiotics and antibiotic resistance genes (ARGs). Elucidation of the residual characteristics of ARGs in livestock manure following the administration of veterinary antibiotics is critical to assess their ecotoxicological effects and environmental contamination risks. Here, we investigated the effects of enrofloxacin (ENR), a fluoroquinolone antibiotic commonly used as a therapeutic drug in animal husbandry, on the characteristics of ARGs, mobile genetic elements, and microbial community structure in swine manure following its intramuscular administration for 3 days and a withdrawal period of 10 days. The results revealed the highest concentrations of ENR and ciprofloxacin (CIP) in swine manure at the end of the administration period, ENR concentrations in swine manure in groups L and H were 88.67 ± 45.46 and 219.75 ± 88.05 mg/kg DM, respectively. Approximately 15 fluoroquinolone resistance genes (FRGs) and 48 fluoroquinolone-related multidrug resistance genes (F-MRGs) were detected in swine manure; the relative abundance of the F-MRGs was considerably higher than that of the FRGs. On day 3, the relative abundance of qacA was significantly higher in group H than in group CK, and no significant differences in the relative abundance of other FRGs, F-MRGs, or MGEs were observed between the three groups on day 3 and day 13. The microbial community structure in swine manure was significantly altered on day 3, and the altered community structure was restored on day 13. The FRGs and F-MRGs with the highest relative abundance were qacA and adeF, respectively, and Clostridium and Lactobacillus were the dominant bacterial genera carrying these genes in swine manure. In summary, a single treatment of intramuscular ENR transiently increased antibiotic concentrations and altered the microbial community structure in swine manure; however, this treatment did not significantly affect the abundance of FRGs and F-MRGs.


Assuntos
Compostagem , Microbiota , Animais , Suínos , Enrofloxacina , Fluoroquinolonas , Esterco/microbiologia , Genes Bacterianos , Antibacterianos/farmacologia , Gado
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...